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A calculation technique and results are presented for characteristics of detached 
flow on the lateral surface of a blunted planar plate, based on the Navier--Stokes 
equation and a two-parameter turbulence model. 

The plane plate is the simplest possible extended heat exchange surface. The presence 
of a blunt leading edge on the plate usually generates a detached flow. The hydrodynamic 
characteristics of such flows are fundamental in analyzing heat exchange processes. 

Study of flow detachment, one of the most important problems of viscous flows, is of 
great significance in theoretical studies and practical applications. A broad range of 
material on detached flows has been collected in Chzhen's monograph [i]. In many cases 
detachment occurs as the result of interaction of the boundary layer with a positive pressure 
gradient along the flow over the body [i, 2]. The experimental studies [i, 3-6] have been 
dedicated to investigation of the detached flow which develops on the leading edge of blunt 
bodies. Theoretical studies of this problem involve great difficulties because of the inap- 
plicability of the boundary layer equations in the given case: the boundary layer ahead of 
the flow detachment point is very thin, affecting the detachment process only weakly, while, 
a more significant role is played by the potential flow [6]. To describe the recirculation 
flow mathematically recourse is had to the Navier--Stokes equation [7]. In cases where tur- 
bulence of the incident laminar flow is considered and at high Reynolds number (Re~104), 
where detachment and reattachment of the flow encourage transition into the turbulent regime, 
one must introduce a turbulence model into the system of equations, i.e., utilize equations 
describing turbulent flow. 

Using the method of [7] the present study will correct the turbulence model and offer 
some results of a calculation of averaged characteristics of the processes considered. 

Fundamental Equations. The flow of a viscous liquid can be described by the laws of 
conservation of mass, longitudinal and transverse momentum components, turbulent kinetic 
energy k, and the rate of dissipation of that quantity s, written in differential form [7]: 
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Fig. i. Integration range with nonuniform differ- 
ence grid. 
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Fig. 2. Component velocity U/U. isolines 

for flow over blunted plate by air: Re = 
3.104, Tu = 0.4%, A = 0.i, kq = 0.05, 
x' = x - 5h, h = 0.0255 m, s = 0.255 m. 

0--2 T (ow~,) = -E~ r .  -E~ / + ~ ,  o,j ~, -:  s. ,  (1) 

where 4) is the generalized dependent variable (~ = U, V, k, g); S~ is the source or drain 

for the variable ~ (Table I). 

The quantities G, ~i, ~t, f~, f2 and R t can be expressed by the following equations 

L t,--~-x/ §  oy / ] Ox ) J' 
p,~ = ~ + p,~, ( 3 )  

P't = C~J,~okz/8, ( 4 ) 

f~ - -  I -- 0,7 exp (-- R J 2 0 ) ,  (5) 

f._ = 1 - -  0 , 2 2  e x p  [ - -  (Rt/6)z], ( 6 )  

Rt = pk21(~l~). ( 7 ) 

The constants of the k--e model are well known [7]: C z = 1.44, C 2 = 1.92, C~ = 0.09, 

o e = 1.3. 

In the case of flow over a body in a channel boundary conditions must be determined on 
the input and output sections, on the channelwall, and on the body surface. For symmetric 
flow over a plate (see Fig. i) we may restrict ourselves to determination of the boundary 
conditions in the upper portion of the channel alone. In such a case boundary conditions on 
the longitudinal axis of symmetry of the channel are also required. 

Conditions at the channel input section are 

TABLE i. Values of ~, F~ and S~ in Eq. (i) 
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Fig. 3. Velocity profiles U/U~ in the 
detached flow zone (notation as in Fig. 
2): points, experiment [3]; curves, 
present calculation. 

( )~' (Tu U~) 8 U = U ~ ,  V=O, k =  TuU~ e ~  
, 100 lO03Ath (8) 

at the output 
Ok as V= -- --- O; 
Ox Ox (9) 

on the axis of symmetry 

ou 
-v=-- 

ay 

and on the channel walls and plate surface 

Ok 8s 
= --=0; (10) 

8y 8y 

u = V =  k = ~ =  o. (11)  

System (i) can be solved by the finite difference method. The flow region is covered 
by a rectangular grid [7]. All variables except velocity are calculated at the grid points, 
a shifted grid being used for the velocity calculations [7]. The shift is performed such 
that the points of the new grid at which the velocity is calculated are located at the mid- 
point of the distance between pressure points at which pressure controls velocity. 

In obtaining the finite difference equations it is assumed that each variable is 
included within its own intrinsic control area or "cell" [7], over which the differential 
equation is integrated. 

The Patankar--Spaulding method is used to derive an equation for calculation of the 
unknown pressure from the continuity and momentum equations [7]. 

The difference equations are solved by the iteration method with external and internal 
iterations. The external iteration includes the following steps. Solution of the quantity 
of motion equation using the initial pressure p* yields a field of intermediate velocities 
U* and V*, which due to the low accuracy of the specified pressure value p* do not satisfy 
the continuity equation. Therefore the pressure correction p' equation is solved and the 
required changes in the velocities U' and V' are determined. Then the equations for the 
remaining variables (k, s) are solved. The external iteration is repeated until solutions 
are obtained which satisfy the specified accuracy level between subsequent iterations. 

Internal iteration is performed with solution of the difference equations for the speci- 
fic variable ~. The solution is carried out in the form of a block of iterations with simul- 
taneous calculation of all ~ along each line of the grid. Since complete convergence is 
not required, one to three applications of the block procedure are sufficient. The differ- 
ence equation and a detailed description of the method are presented in [7]. 

Calculation Results and Analysis~ Experimental data on the problem under consideration 
[1-4] have encouraged the appearance of the method of [7], development of the calculation 
method presented, and in particular, use of Eq. (5) for determination of fH' used previously 
in the boundary layer problem [2]. 

Figure 2 shows overall pattern of change of the longitudinal velocity component charac- 
teristic of Reynolds numbers from 10 3 to 10s: the detachment zone length is equal to ~ 4h, 
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Fig. 4. Detachment zone length on lateral 
plate surface vs Re: 1-3) experimental 
data of [4], 4-6) [3], curve) present cal- 
culation, Tu = 0.4%, kq = 0.05. 

and the maximum reverse velocity is approximately 30% of the incident flow velocity, which 
agrees with the experimental data of [3]. Comparison of calculated and experimental [3] 
velocity profiles in the flow detachment zone (Fig. 3) shows that for numerical modeling the 
reverse zone thickness proves to be somewhat less than that given by the data of physical 
experiment. One cause of such divergence may be the fact that the mathematical model does 
not consider the effect of flow line curvature on the characteristics of flow over the plate 
considered. 

It is well known [4] that solution of the Navier--Stokes equations show a dependence on 
Re of the reverse zone length, which in the laminar flow regime at small Re (i00 < Re < 500) 
may extend from the leading edge of the plate a distance of 20 or more thicknesses. However, 
application of the k--s model to this system of equations with increase in Reynolds number 
leads to a change in the calculation results. As the experimental data of [4] show, at 
Re~325 the recirculation zone length is at a maximum (L~?h) In the detached shear 
layer transient velocity oscillations begin to appear, and with further increase in Re a 
transition to a turbulent flow regime occurs. Moreover the detachment zone becomes smaller, 
its length reaching its asymptotic value, equal to approximately four plate thicknesses. 
Therefore introduction of a turbulence model into the problem solution is necessary. How- 
ever at Re < 325 the k--g effect is insignificant and only the increased turbulence of the 
incident laminar flow need be considered. 

Results of a calculation of detachment zone length (Fig. 4) obtained over a wide range 
of Reynolds number (I02<~e~I06) agree with experimental data for both low [4] and high 
[3] Re. 

The present mathematical model permits consideration of the effect of turbulence inten- 
sity and its scale on flow characteristics, which are specified by boundary condition (8). 
Table 2 presents results of a calculation showing the effect of Tu on detachment zone length 
and maximum reverse velocity therein. Increase in the turbulence scale A from 0.i to 0.4 
has a very slight effect on these characteristics. 

Analysis of calculated and experimental [3] data on flow development downstream from the 
recombination point shows that the present method models the real overflow process with 
satisfactory accuracy. The experimental velocity profiles of [3] become similar in prac- 
tice beginning at distances equal to 14 plate thicknesses. In calculating velocity profiles 
a higher value is obtained for this distance. 

The calculated boundary layer form parameter H is also somewhat elevated as compared 
to experiment [3]. Hence it follows that the k--e turbulence model generates reduced values 
of turbulence characteristics beyond the recombination point, and in this respect it must 
be refined in the direction of increasing pulsation characteristics downstream from the 
detached flow recombination point. 

On the whole, the present method can be used to study detached flows developing as the 
result of interaction of a potential flow with a positive pressure gradient. It is evident 
from the results presented that the method is fully suitable for numericalmodeling of aver- 
age hydrodynamic characteristics of the detached zone whichdevelops on the leading edge of 
a blunted plane plate. 
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TABLE 2. Detachment Zone Length and Maximum Reverse 
Velocity vs Intensity Turbulence, Re = 26900, kq = 
O.05, A = 0.i 

Llh 
U/U~ 3540 i 3338 I q001  

--0,30 --0,30 --0,27 --0,25 

In performing the present calculations the ARTEK program package [8] for the BESM-6 
computer was used, allowing modeling of the hydrodynamics and heat exchange of curvolinear 
bodies for planar and axisymmetric overflow situations. 

NOTATION 

h, plate height, m; hi, channel height, m; H, form parameter, 6i/62; k, turbulent kine- 
tic energy; kq, channel encumbrance, h/hi; L, detachment zone length, m; s plate length, m; 
U, V, average velocity components, m/sec; U=, incident flow velocity at channel input, m/sec; 
x, y, Cartesian coordinates, m; 6i, displacement length, m; 62 , momentum loss thickness, m; 
~, turbulent energy dissipation; A, turbulence scale; H, viscosity coefficient, N'sec/m2; 
p, density, kg/m3; Re, Reynolds number (U=hp/H); Tu, flow turbulence (100v~2/U=, %). 
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